Python

Lenguaje de programación

Python

Python es un lenguaje de programación libre, producido en paquetes, muy versátil, el cual tiene múltiples aplicaciones y a la creación de gráficos; tiene una curva de aprendizaje sencilla y posee una amplia comunidad científica a nivel mundial con la cual se puede compartir código y realizar modelación. 

Noticias

Anaconda es una muy buena alternativa para descargar Python

Descargar Python de 👉 Anaconda

Características de Python

Tipos de Objetos en Python

En Python, todo es un objeto, lo que significa que todos los datos son representados como objetos o instancias de una clase.

🔵 Tipos de Objetos en Python:

  1. Enteros (int): Son números enteros sin punto decimal.  Ejemplo, 1, 2, 3, -4, -5.

  2. Números de punto flotante (float): Son números con decimales. Ejemplo, 2.0, 3.14, 1.5, -0.2.

  3. Cadenas de caracteres (str): Son secuencias de caracteres entre comillas simples o dobles. Ejemplo, «Hola», «Python», «123».

  4. Listas (list): Son colecciones ordenadas y modificables de elementos. Ejemplo, [1, 2, 3], [«Hola», «Python»], [1, «Hola», 2.0].

  5. Tuplas (tuple): Son colecciones ordenadas e inmutables de elementos. ejemplo, (1, 2, 3), («Hola», «Python»), (1, «Hola», 2.0).

  6. Diccionarios (dict): Son colecciones de pares clave-valor no ordenadas y modificables. ejemplo, {«nombre»: «Juan», «edad»: 25, «ciudad»: «Madrid»}.

  7. Conjuntos (set): Son colecciones no ordenadas y sin elementos duplicados.  ejemplo, {1, 2, 3}, {«Hola», «Python», 2.0}.

  8. Booleanos (bool): Son valores verdadero o falso. En Python, los valores booleanos son True y False.

  9. NoneType (None): Es un objeto que representa la ausencia de valor. Se utiliza comúnmente para inicializar variables o argumentos de funciones.

Mi primer script en Python

Aunque los términos «script» y «algoritmo» pueden parecer similares, son distintos en Python.

🔵 Un script en Python es un archivo de código fuente que contiene una serie de instrucciones que pueden ser ejecutadas por el intérprete de Python. Un script es un programa de computadora que se utiliza para automatizar tareas o realizar operaciones específicas en un sistema informático.

El Script se puede ejecutar en cualquier plataforma que tenga instalado el intérprete de Python.

🔵 Un Algoritmo es una serie de instrucciones que se utilizan para resolver un problema específico o realizar una tarea en particular.

En Python, los algoritmos se implementan mediante una secuencia de comandos lógicos escritos en código fuente.

Mi primera Función en Python

🔵 En Python, una función es un bloque de código que se puede reutilizar para realizar una tarea específica.

Las funciones en Python se utilizan para dividir el código en piezas más pequeñas y manejables, lo que hace que el código sea más fácil de leer, escribir y mantener.

🔵 La estructura básica de una función en Python se compone de los siguientes elementos:

  1. La palabra clave «def»: La palabra clave «def» se utiliza para definir una función en Python.

  2. El nombre de la función: A continuación de «def», se escribe el nombre de la función, el cual debe ser descriptivo y seguir las convenciones de nombrado de Python.

  3. Parámetros: Los parámetros son los valores que se pasan a la función cuando se llama. Los parámetros son opcionales y se colocan dentro de los paréntesis después del nombre de la función.

  4. El cuerpo de la función: El cuerpo de la función contiene las instrucciones que se ejecutan cuando se llama a la función. El cuerpo de la función está indentado y se escribe después de los parámetros.

  5. Valor de retorno: La mayoría de las funciones en Python devuelven un valor como resultado. El valor de retorno es opcional y se especifica utilizando la palabra clave «return».

nombre_usuario = solicitar_nombre() print("¡Hola, " + nombre_usuario + "! Bienvenido.")

Algoritmos

Índice Masa Corporal – IMC

Calificación de origen DME – Nivel de Evidencia Científica 

Fórmula del Balthazar

Estadística con Python

El análisis estadístico es una de las áreas en las que Python se destaca, debido a la gran cantidad de bibliotecas y herramientas disponibles, las cuales permiten realizar análisis descriptivo e inferencial.

Análisis Univariado – Bivariado – Multivariado

🔵 Los pasos para realizar el análisis estadístico en Python:

  1. Importar las bibliotecas necesarias como NumPy, Pandas, Matplotlib, Seaborn y SciPy.

  2. Preprocesar los datos: El preprocesamiento de datos implica limpiar, transformar y organizar los datos para que se puedan analizar. En esta etapa, se eliminan valores atípicos (outliers), rellenan valores faltantes y transforman los datos.

  3. Realizar análisis descriptivo: El análisis descriptivo implica resumir y visualizar los datos para obtener una mejor comprensión de su distribución y estadísticas básicas. En Python, mediante tablas de frecuencia, histogramas, gráficos de caja y bigotes, y gráficos de dispersión.

  4. Realizar análisis inferencial: El análisis inferencial implica hacer conclusiones acerca de una población en base a una muestra de datos. En Python, se utilizan herramientas como pruebas de hipótesis, intervalos de confianza y regresión.

  5. Visualizar los resultados: Permite comunicar los resultados de manera clara y efectiva. Las bibliotecas Matplotlib y Seaborn se usan para crear gráficos y visualizaciones que muestren los resultados del análisis estadístico.

  6. Interpretar los resultados: Interpretar los resultados y hacer conclusiones acerca de los datos. 

Curso Python Introducción

Generalidades

Definiciones y conceptos

Software – Interfaz – Librerías

Ayuda

Guía de estilo

Configuración

Descargar – Instalar
Paquetes – Librerías

Caracterización de los datos

Tipos de datos
Estructuras de los datos

Fuente de datos

Gestión directorios

Importar/exportar archivos

Calidad de los datos

Limpiar – Borrar 

Datos perdidos – Missing – N/A

Transformación de los datos

Procesamiento de los datos

Generalidades de Python

Configuración
Interfaz de Jupyter
Tipos de operadores
Tipos de objetos
Fuente de datos
Calidad de los datos

Curso Python Introducción

Representación Gráfica

Gráficos Variables Categóricas - Numéricas 

Interpretación de la información

Evaluación de la información a partir de los objetivos planteados en la investigación

Comunicación de la información

Visualización de los datos

Estadística con Python

La estadística se clasifica en descriptiva e inferencial

Referencias bibliográficas Python

Libros de R